Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Energy ; 272, 2023.
Article in English | Scopus | ID: covidwho-2261563

ABSTRACT

The Russia-Ukraine conflict and the COVID-19 pandemic have made fossil energy more urgent, and the catalytic pyrolysis of biomass is conducive to energy transformation to achieve global sustainable development. In this paper, the influence mechanisms of different metal ions on biomass pyrolysis under conventional heating and microwave heating conditions were studied. Through thermogravimetric analysis, it was found that the existence of metal ions could change the pyrolysis behaviors of biomass, leading to different degrees of changes in the main pyrolysis temperature and range. Compared with conventional heating conditions, metal ion-loaded biomass samples exhibited higher heating rates under microwave heating conditions due to the possible hotspot phenomenon, resulting in increased gas yields and decreased bio-oil yields. Among them, the trivalent iron ion exhibited excellent catalytic properties for gas generation, with a high gas yield of 57.9% and a bio-oil yield of 12.1%. The components in bio-oil were greatly simplified by microwave irradiation, the number of the bio-oil compounds from the pyrolysis of Fe-loading pine sawdust was reduced to 77, and the GC-MS area of light compounds with carbon number less than 10 was increased to 84.4%. Phenol and furan in bio-oil are also catalytically converted into aromatic hydrocarbons, which are ideal chemical raw materials. © 2023 Elsevier Ltd

2.
Waste Management ; 155:77-86, 2023.
Article in English | Scopus | ID: covidwho-2246649

ABSTRACT

Inexpensive iron-based catalysts are the most promising catalysts for microwave pyrolysis of waste plastics, especially a large number of disposable medical masks (DMMs) with biological hazards produced by spread of COVID-19. However, most synthesized iron-based catalysts have very low microwave heating efficiency due to the enrichment state of iron. Here, we prepared FeAlOx catalysts using the microwave heating method and found that the microwave heating efficiency of amorphous iron and hematite is very low, indeed, these materials can hardly initiate pyrolysis at room temperature, which limits the application of iron-based catalysts in microwave pyrolysis. By contrast, a mixture of DMMs and low-valent iron oxides produced by hydrogen reduction at 500 °C can be heated by microwaves to temperatures above 900 °C under the same conditions. When the hydrogen reduction temperature was incerased to 800 °C, the content of metallic iron in the catalyst gradually increased from 0.34 to 21.43%, which enhanced the microwave response ability of the catalyst, and decreased the gas content in the pyrolysis product from 78.91 to 70.93 wt%;corresponding hydrogen yield also decreased from 29.03 to 25.02 mmolH2·g-1DMMs. Moreover, the morphology of the deposited solid carbon gradually changed from multi-walled CNTs to bamboo-like CNTs. This study clarifies the pyrolysis mechanism of microwave-assisted iron catalysts and lays a theoretical foundation for their application in microwave pyrolysis. © 2022 Elsevier Ltd

3.
IEEE J Electromagn RF Microw Med Biol ; 6(1): 41-51, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1731023

ABSTRACT

This paper describes an innovative remote surface sterilization approach applicable to the new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The process is based on the application of a liquid film on the surface or object under sterilization (OUS). A beacon signal is used to self-steer the transmitted power from the designed retrodirective antenna array (RDA) towards the OUS using circularly polarized fields; then, the sterilization is completed by raising and maintaining the required temperature for a certain time. Results suggest that the process takes 5 minutes or less for an angular coverage range over 60 degrees whilst abiding by the relevant safety protocols. This paper also models the power incident onto the OUS, providing consistent results with full-wave simulations. A practical RDA system is developed using a 2 × 1 microstrip patch array operating at 2.5 GHz and tested through the positioning of a representative target surface. Measurements, developed by sampling the power transmitted by the heterodyne RDA, are reported for various distances and angles, operating in the near-field of the system. To further validate the methodology, an additional experiment investigating virus deactivation through microwave heating was also developed. Measurements have been performed with an open cavity microwave oven on the Coronavirus (strain 229E) and egg white protein in a cuvette. This demonstrates that the temperature increases of aqueous films up to 70 [Formula: see text]C by remote microwave-induced heat can denature proteins and deactivate viruses. Possible applications of the method include sterilization of ambulances, medical equipment, and internet of things (IoT) devices.

SELECTION OF CITATIONS
SEARCH DETAIL